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It is well known that if the variation with temperature of viscosity is taken into account, the onset of
convection in an infinite layer of fluid that is heated from below takes the form of hexagonal convection
cells. It is also well known that in a sufficiently strong shear flow, rolls aligned with the flow direction
are the preferred mode of convection. Here the process by which a steady or unsteady shear flow de-
stroys the usual hexagonal cell pattern is investigated. The critical size of the shear flow that enables
rolls to be established at the onset of convection is determined for the case when the stress is prescribed

at the boundaries.

PACS number(s): 47.20.—k

I. INTRODUCTION

Our concern is with the manner in which steady and
unsteady shear flows remove the preference for a heated
fluid layer to become convectively unstable with regard
to hexagonal cells. It is well known that if variation with
temperature of viscosity is taken into account, the onset
of convection without shear is in the form of hexagonal
cells, with the direction of flow at the center of the cell
dependent on the sign of the change in viscosity due to
temperature; see Segel and Stuart [1], Palm, Ellingsen,
and Gjevik [2], Segel [3], and Busse [4]. Convection
occurs via a subcritical bifurcation to the hexagonal cell
pattern rather than via supercritical bifurcation to con-
vection rolls as occurs with a Boussinesq fluid. After
convection has been established, a further increase in the
Rayleigh number for the flow causes the hexagonal pat-
tern to become unstable and a roll mode is established. If
the Rayleigh number is subsequently decreased, the roll
pattern persists to a value of the Rayleigh number lower
than the one at which rolls first appear. This hysteresis is
again a direct consequence of the subcritical nature of the
bifurcation to hexagonal cells. Another consequence of
this subcritical bifurcation is that the onset of convection
occurs discontinuously when the Rayleigh number is in-
creased.

Suppose next that the heated fluid layer is subjected to
a shear flow caused by either a pressure gradient or the
motion of the channel walls; a recent review of this topic
has been given by Kelly [5]. It can be shown that if the
shear flow is in, say, the x direction, then rolls aligned
with the x axis (i.e., longitudinal rolls) are not affected by
the flow and the critical Rayleigh number for the onset of
such rolls is unchanged from its value for the zero flow
case. However, if the horizontal aspect ratios are large,
all other rolls are stabilized by the shear flow on a linear
basis and for small flow rates the critical Rayleigh num-
ber is increased by an amount proportional to the square
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of the flow Reynolds number. The preference for longitu-
dinal rolls in fully developed, large aspect ratio channel
flow has been seen in many experiments, although hexag-
onal convection has sometimes been observed at very
small flow rates (Ostrach and Kamotani [6]). Expressions
for the critical Rayleigh number for a Boussinesq fluid at
low Reynolds numbers for the onset of rolls of arbitrary
orientation have been given for Couette flow by Ingersoll
[7], whereas Miiller, Liicke, and Kamps [8] have given re-
sults for Poiseuille flow.

Thus, in the presence of a shear flow, any roll distur-
bance not aligned with the shear flow has a critical Ray-
leigh number which, for small Reynolds numbers, in-
creases monotonically with the Reynolds number. Since
a hexagonal convection cell is formed by the combination
of three roll cells with axes parallel to the sides of an
equilateral triangle, it can be expected that at some stage
the preference for the onset of convection in a non-
Boussinesq fluid to take the form of hexagonal cells will
be destroyed. We concern ourselves in this paper with
details of how a shear flow gradually decreases the prefer-
ence for hexagonal cells. This process has been described
qualitatively for a fluid with a prescribed variable mean
temperature gradient by Yoshizaki [9], but he did not
predict numerical values of the critical shear, nor did he
examine in detail all the bifurcations possible for this
problem.

The procedure adopted in the rest of the paper is as
follows. In Sec. II we shall derive a system of amplitude
equations that are the appropriate generalizations of the
equations from [3] in the presence of a weak shear flow.

- In fact, we will allow the shear flow to be nonplanar and

unsteady, but we shall consider only slowly varying time
periodic small amplitude flows. In Sec. IIT we shall inves-
tigate the bifurcation structure of these equations. This
will enable us to describe the process by which hexagonal
cells are destroyed by a shear flow. In Sec. IV we shall
draw some conclusions.
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II. THE AMPLITUDE EQUATIONS
FOR CONVECTION IN A WEAK,
SLOWLY OSCILLATING SHEAR FLOW

To begin with, we determine the effect of a weak shear
flow on the linear Bénard convection problem for a Bous-
sinesq fluid. Suppose then that such a fluid occupies the
region 0 <z <d, and that the wall z=0 is maintained at a
temperature T+ AT, whereas the upper one has temper-
ature T,. We suppose further that the lower wall has ve-
locities (k/d )\, coswT, (k/d)Aycos[wT+v] in the x and
y directions. Here « is the thermal diffusivity, and 7 is a
dimensionless time variable based on d%«~!. The dimen-
sionless parameter w relates the time scale of the flow os-
cillations to the diffusive time scale. Here we shall con-
cern ourselves with the low frequency case w <<1, but a
more general discussion of the linear case can be found in
Kelly and Hu [10,11]. We shall make the further as-
sumption that the amplitude of the flow oscillations is
small and therefore we take A; and A, to be small; more
precisely, we identify the limit ©—0 with A;,A,~O(w'/?)
as being the crucial case for small amplitudes and fre-
quencies. This choice, made using the ideas of DiPrima
and Stuart [12], ensures that the Floquet exponent associ-
ated with the stability problem has comparable real and
imaginary parts. We therefore write

M=A8, A,=K0 =08

and consider the limit §—0 with 7:1,7;2 and () held fixed.
If we use k/d as a velocity scale, then for small values
of & the basic flow may be written in the form

u=58{(Rk, cos[Qz],X, cos[Qr+7],0)}(1—2)+0(5%) ,
2.1

where ¢ =8%r and z has been scaled on d. The basic tem-
perature field is, of course, not dependent on this velocity
field and is given by

T=T,+ATz . (2.2)

We now perturb the above basic state to a disturbance
periodic in the x,y directions with wavelengths
21r/kx,21r/ky. Thus we write, for example, the per-
turbed normal velocity component w in the form

w={wq(t,z)+0w,(t,z)+8%w,(t,z)+ -}

xl sin{)¢
Xexpi 1k, x_—SE).—
A sin[Qz+7y ]
+k, [y—zT . (2.3)

Here we have introduced extra time-dependent terms in-
side the exponential factor in order to satisfy in a more
convenient form the O(8) solvability condition obtained
in the linear stability problem. (That problem yields a
time-dependent wave velocity and we are in effect choos-
ing to work in a coordinate system moving with the fluid
midway between the two walls.) After the usual manipu-
lations, we find that the linear stability equations can be
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expressed in the form

[0 1L —32+k2][32— k2 [wo+w,;+ - - - ]
=—k2Ra[0,+80,+ -~ 1,

[L—32+Kk21[6,+86,+ -+ |=[wo+bw,+ -+ ],

where Ra is the Rayleigh number, ¢ is the Prandtl num-
ber, k3= k,f +ky2, and the operator

L= {8%,+(ik, 8%, cosQt +ik,5X, cos[ Q¢ +7 1)

ik, A ik, .
X[l—z]——E—SKIcoth——E—S}»zcos[QH-y] .

The Rayleigh number is expanded as

Ra=R, +8R,+ - . 2.4)

The leading order problem for (w, 6,) is
(az_kcz)zwo"_“kczRoeo >
(32 —k2)0p=—wy .

For convenience, we will assume that the perturbed ve-
locity field must satisfy fixed stress surface conditions at
z=0,1. While this assumption tends to make our prob-
lem somewhat artificial, it enables us to make analytical
progress most simply with the nonlinear problem to be
discussed shortly and probably gives qualitatively correct
results for the low frequency case discussed in this paper.
Thus, if the velocity perturbation satisfies the zero stress
conditions at z=0,1 and the boundaries are isothermal,
we obtain the usual eigenrelation

(k2+7*)*=k2R,, , (2.5)

so Ry, =277*/4 and k ,=m/ V2. The corresponding

eigensolution is
(8, wo)= A(t)sinmz(1,m2+k2) , (2.6)

where A4 is an amplitude function to be determined at
higher order. At order 6 we find that the solvability con-
dition required for a solution of that system to exist is au-
tomatically satisfied because of our insertion of the
correct time-dependent factor in the exponential term of
(2.3). We find that

(wy,0)=iFA(t)w,,8,),
where F=2 k,cosQt +szy cos[Qt+y], and
(df—-kcz)zﬁ\)l—kczRO@l=—0_1(17'2+k02)2(%—-z)sin7rz ,
(d}—k2)8,+,=(1/2—2z)sinmz ,
,=0)=8,=0, z=0,1.

(2.7)

At order 82 we find that the differential system for w, has
a solution if
dA

—_— A_*
zdt uUR, A—A*F4 ,

where

(2.8)
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$= 9774(1-:(1/0) ’ (2.9)
u=%2 ) (2.10)
k*=folsin1rz [a_l(z—%) (DY —,72/2)

+3;’—491 }dz, 2.11)

and A* =A*(0) is always positive.
The linear amplitude equation (2.8) can be integrated
to give

uR,t—A* [Pt

2 b
where a, is a constant. The neutral stability case is then
defined by

A =ayexp

27 27/Q _
pRz—Q——x*fO Fdt =0, 2.12)

so that

Ry=22 ((Rk, P+ Rk, P+ 2k ke, R R
HR, =7 ((Aky 2k,) <k, Ak, cosy} . (2.13)
The wave numbers k, and k, must be constrained such
that
it

2 ’
so that writing k, =(7/V2) cosé, ky=(1r/\/_2)sin0 en-
ables us to express (2.13) in the form

At A
PRy =" A2 cos?0+A2sin%0

2 2—
k2+k2=

+24,X, cosy sin6 cosh)} . (2.14)

The right-hand side above is always nonnegative so that
the shear generally has a stabilizing effect on the flow.
However, we can see for the cases (A;=0,0=0) and
(X,=0,6=m/2) that R,=0. Thus in these cases we re-
cover the known result that, at this order, rolls aligned
with the flow are not affected by the flow. Further dis-
cussion of (2.13) can be found in [10]. Here we wish to
concentrate on the role of the shear flow on the pattern
selection problem in the weakly nonlinear regime.

In fact, having found the linear form for the amplitude
equation in a weak shear flow, we can simply use the re-
sults of previous authors to extend the analysis to the
weakly nonlinear regime. We refer to [1,3] for the slight-
ly non-Boussinesq fluid. The problem studied by the
latter authors concerned the pattern selection problem in-
volving rolls and hexagons. Using the notation of the
present paper, it was shown by the above
authors that the selection problem reduces to the
investigation of the nonlinear interaction of modes with
wave numbers (kx,ky)=(1r/\/§)(-§—,—1/§/2), (kysky)
=(m/V2)(1,V'3/2), and (k,,k,)=(m/V'2)(1,0). In the
absence of a shear flow, the normal velocity component
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expands as

w=6sinmz{XE,+YE,+ZE;}+c.c.+ -+,

with
_ im |x V73
Bz 2727
ir |x , V3
Exmexp s 12727
E3=expl71;x.

If the variation of viscosity is assumed to be small, in fact
0(8), then it is found that the equations to determine the
complex amplitudes X, Y, and Z are

3X=eX—aYZ—X{R,|X|*+P|Y|*+P|Z|*}, (2.152)
3Y=€eY—aXZ—Y{R,|Y|*+P|X|*+P|Z|?}, (2.15b)
3Z=€Z—aXY—Z{R,|Z|*+P|X|*+P|Y|*}, (2.15¢)

where an overbar denotes the complex conjugate,
€=uR,, and a,R |, and P are the constants defined in [3].
Because we have complex amplitudes, (2.15a)—(2.15¢)
correspond to those of Segal [3]. Note, however, that
similar equations can be found if the variations with tem-
perature of other fluid properties are taken into account;
see, for example, [4]. In order to determine the effects of
a weak, low frequency, unsteady, nonplanar shear flow
upon pattern development, one can essentially combine
the analyses leading to (2.8) and (2.15a)—(2.15¢). In order
to do so, it is first necessary to define new variables X and
y by
A, sinQr 5\»2 sin[Qt +7v]
2Q8 206 ’

and then x and y appearing in the definitions of E; and
E, are replaced by X and J, respectively. The generaliza-
tions of (2.15a)-(2.15¢c) are then found to be

3X={e—q,]X—a¥YZ—X{R,|X|>+P|Y|*+P|Z|}},

X=x , Y=y —

(2.16a)
3Y={e—q,]Y—aXZ—Y{R,|Y|*+P|X|?+P|Z|*}},
(2.16b)
37 ={e—[2X,cosQt *}Z —aXY
—Z{R,|Z|*+P|X|?2+P|Y|*}, (2.16¢)

with g, =(X, cosQt —X, cos[Qt +7])%, g, =(R, cosQt
+2X,cos[Qt+y])>

Here, for convenience, we have defined
A =(m2 /AR, X, =(V3/2)7*A*12%,. In general,
closed form solutions of (2.16a)—(2.16c) are not available.
Therefore, our aim in the following section will be to find
the effect of the terms proportional to A, and X, on the bi-
furcation structure associated with hexagonal and roll
cells.
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III. THE SOLUTION OF THE
AMPLITUDE EQUATIONS

In order to make analytical progress with the solution
of (2.16a)-(2.16c), we now assume that (>>1. With
reference to the discussion given at the start of this sec-
tion, we first let §—0 with Q fixed and then consider the
limit of large Q; see Sec. IV for further discussion. If we
confine our attention to 27/ periodic solutions, then for
Q>>1 the amplitude equations can be solved using a
multiple scale approach. We write

T=Qt

so that 9, —9, + 9 and seek a solution of the form

(X,Y,Z)=(X,, Yo, Zo)+ ?ll—(xl, YL ZO+ ., G0

where X, X,Y,, etc. are functions of t and T. At order
Q) we obtain
Xor=Yor=Zor=0

so that X, Y, and Z, are functions only of . At order
Q° the equation to determine X, is found to be

—3Xr=—3Xy +{e—q }Xo_ayozo
—Xo{R,|1X,12+P|Yy|*+P|X,|?)

together with similar equations for Y, and Z,. If these
equations are to have a solution period in 7, we require
that

IXor={e—1q,}X,—a¥,Z,

—Xo{R,|Xo[*+P|Yo|>+P|Zo1%}, (3.22)
SYor={e—1g,}Y,—aX,Z,

—Yo{R,|Yo*+P[X,|>+P|Z,[?},  (3.2b)
3Zyr={e—2X1}]Zy—aX, Y,

—Zo{R|Zy|*+P|X,[*+P|Y, |}, (.20)

with
g1 =[A}+2% —2cosyA, A, 1,3, =[A3+X3+2 cosy A A, ]

in the periodic case. For the case of steady shear we mul-
tiply 4,,4, by 2 and set y=0. The fact that only the
mean values of ¢,,g,, etc. are required for Q >>1 allows
this case to be discussed along with the steady flow case.
The asymptotic solution given above for 2 >>1 can be
continued to arbitrary order and is suggested by, for ex-
ample, setting Y=Z =0 in (2.16) and letting Q— o in
the exact solution of the resulting equation for X.

The above equations with 9, =0 determine the equilib-
rium amplitude solutions of the problem with zero shear
flow if A;=A,=0, and their bifurcation structure for this
case is therefore as described in [1,3]. In the presence of
a shear flow we see that the bifurcation points for the
pure modes with just one of X, Y,, and Z, nonzero are
split apart. It is the splitting of the eigenvalues that
causes the hexagonal mode to disappear in the presence
of a sufficiently large shear flow. In order to see why this
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is the case, it is instructive to first recap the well known
results for the case A;=1,=0. Here the amplitudes X 0
and Y, are taken to be equal and, taking X, Y, Z, to be
real, we find from [1] that the possible solutions are

(I) Conduction:

Xo=Y,=Z,=0, (3.3a)
(ITa,b) Rolls:
. |12
Xy=Y,=0, Zy==%|— s (3.3b)
R,

(ITIa,b) Hexagons:
Xo=Y,=Z,, Zo=Q2T) '{—aTVa’+4eT},
(3.3c)
(IVa,b) Hexagons:

Xo=Yo=—2Zy, Zy=QT) Y{—aFVa+4eT},

(3.3d)

(V) Mixed:

2 1172

Rla

X,=Y,=%xR'"? o

e— , (3.3¢)

a
Q b
where Q=P —R|,4R=P+R, and T=P+4R.

The equilibrium forms for Z; given by (3.3a)~(3.3e) are

shown in Fig. 1; the solutions shown correspond to the
case 0=0.5, a=1. The other constants appearing in

Z,
40
20
0

-20

—40

0 10 20 30 40 50 60 70 80

FIG. 1. The equilibrium solutions of (3.2) for A-=A,=0. Un-
stable solutions are represented by the dashed curves.
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(3.3) were obtained from [3]. The stability of the different
solutions can be found by an examination of the linear
growth rates of small perturbations to (3.3a)—-(3.3e) in the
manner discussed in the Appendix of [3] by use of
(3.2a)-(3.2c). The unstable solutions are represented by
the dashed curves in Fig. 1.

The zero amplitude solution loses stability at e=0 so
that a hexagonal pattern corresponding to IIla or IVa
will be generated when the Rayleigh number is slowly in-
creased through zero. However, the hexagonal pattern
loses stability at F, due to the effect of the mixed mode V'
even though this mode is unstable. The latter mode origi-
nates as a bifurcation from the roll mode at F;. Beyond
F, the roll mode IIb becomes stable. It follows that
beyond F, the hexagonal cell pattern is replaced by a roll
pattern. However, if the Rayleigh number is subsequent-
ly decreased, hysteresis occurs and the cellular pattern is
not reestablished until F,.

Now let us show how the above bifurcation picture is
modified by the effect of a shear flow. The first point to
note about the solutions of (3.2a)—(3.2c) in general is that
the hexagonal solution X, = ¥,=2Z,, is no longer possible
because, except in special circumstances, the three modes
have different critical values of € corresponding to linear
instability. In the first instance we suppose A; =0 so that
the shear flow is parallel to the direction of the roll solu-
tions ITa,b. The finite amplitude states are then found by
solving

X% v 2 2

0=le——" Xo—a¥,Zy—Xo{R,|X,?+P|Y,l
+P|Z,?} , (3.4a)

X% Y 2 2

0= E_T YO_aXOZO_YO{RIIYOI +P'X0|
+P|Z,|%}, (3.4b)

0=eZy—aX,Yo—Z{R,|Z,|*+P|X,[*+P|Y,[|*} .

(3.4¢)

In this case we see that the X, Y, modes have the same
linear critical value of €; this enables us to seek finite am-
plitude states with X,=Y,. However, in order to
correctly describe the stability properties of the finite am-
plitude states, we will relax the latter condition at a later
stage.

The solutions IIa and IIb given by (3.3a) and (3.3b) sur-
vive unchanged because the effect of the shear flow is felt
only by modes not aligned parallel to the shear. Equa-
tions (3.4a)—(3.4c) can then be solved with X,=Y,70
and Z,70; Z, must then satisfy the cubic equation
72

ale—=% |+2Z,{e(2P—4R)—a’—PA%}

—3aPZ}+Z3[4R +P][4R —2P]=0. (3.5

If we set A,=0, then we can factorize the above cubic
equation to obtain the finite amplitude solutions III, IV,
V of (3.3a)—(3.3e). Moreover, in the limit e— oo with A,
held fixed, we again recover III, IV, V of (3.3a)-(3.3e).

3691

Figure 2 shows how the bifurcation picture for III, IV, V
is initially modified for a relatively small value of
A,=0.4. The main point is that the modes IIIb and IVb
no longer connect with IIla and IVa, a fact that is more
readily seen in Fig. 3, where the area near the origin is ex-
panded. In fact IIIa and IVa now arise as bifurcations
from the roll mode IIb. The unstable solutions are again
represented by dashed curves. Point F, of Fig. 1 splits up
into points F5 and F;, and the solution branch corre-
sponding to IIla and IVa is stable in the interval from F,
to F; . For small values of A, the solutions IIIa and IVa
are close to those given by (3.3c) and (3.3d) so that the
cell pattern is almost hexagonal; see Fig. 6 later. Since
IIIa and IVa correspond to a hexagonal cell pattern when
the shear is zero, we shall refer to them below as
“modified hexagonal” solutions. We note from Fig. 2
that the roll cell IIb is stable in a small interval beyond
€=0 until the unstable branches of IIla and I'Va bifurcate
from that solution branch at F, (see Fig. 3). Hence, if the
background disturbance level is sufficiently small, it is
possible for the initial cell pattern to be in the form of
rolls even for an arbitrarily small shear flow. However,
this roll pattern persists only over a small interval near
€£=0 and is possibly not accessible experimentally.

In Fig. 3 we show how the bifurcation picture evolves
when the shear flow is increased. We see that the turning
point F; of Fig. 2 eventually merges into F,, at which
stage the modified hexagonal mode arises as a stable su-
percritical bifurcation from a stable roll. Similarly, F;
merges with F,, at which stage the modified hexagonal

Z,

A2 increasing

FIG. 2. The equilibrium solutions of (3.2) for X; relatively
small. Unstable solutions are represented by the dashed curves.
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mode merges smoothly into a stable roll and no hysteresis
would be observed experimentally. At even higher values
of the shear F, and F, merge and no stable remnant of
IIIa and IVa of (3.3c) and (3.3d) remains. Thus IIb is
now stable for all of the values of € >0 for which it exists.
Therefore, at this stage we conclude that the shear flow
has completely destroyed the possibility that convection
of any pattern other than roll cells can occur. It is easy
to show from (3.4a)—(3.4c) that A,., the critical value of
X, where the points of secondary bifurcation from the roll
mode merge, is given by

02

o _
A 2[P—R,]

(3.6)

By definition, the corresponding critical value of A, is
given by
2 3m*A*AZ,
2c 4
The critical Reynolds number for the flow is then given
by
oR,. =684, .

In Fig. 4 we show a plot of A,.a ~! as a function of the

Z, .
o -
40 -
////
///
7
-7 I,
20+ /// 11,1V,
v I
S e
/ P
VR
:'I Pl
O»——/.——_———— — —— — . — — —— —

Lol BN

- Tt

-40

0 10 20 30 40 50 60 70 80

FIG. 3. The equil_i_tz)rium solutions of (3.2) for the case
c=0.5, a=1, A,=0, A,=0, 1.6, 3.2, 4.8, 6.4, 8,... Unstable
solutions are represented by the dashed curves. The roll mode
is represented by the thick curve and, for a fixed value of the
shear, is unstable for positive amplitudes and stable for negative
amplitudes apart from the interval between the points where
secondary bifurcation takes place. Note that for large enough
shear flows, the latter interval is not present and the roll mode is
stable whenever it has a negative finite amplitude.
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)\gca'l

0.6

0.5

0.3F

0.2

OO 1 1 1 Il |

FIG. 4. The quantity XZCa’l as a function of the Prandtl
number.

Prandtl number. The corresponding critical value of the
Reynolds number is then found by calculating the ap-
propriate value of a for the given fluid. In fact, since our
method is valid also for the case of rigid boundaries, it
seems sensible to give an estimate of the critical Reynolds
number for that case. In order to do so, we use the values
of the nonlinear coefficients given by Pampaloni et al.
[13] for water at 25°C. The constants P and R, were ob-
tained from [4] and Pampaloni et al. found excellent
agreement with their experimentally predicted values of
these constants. The constant a is related to the constant
P of Pampaloni et al., who quote a theoretical value of
2.06 for it. The experimental measurements of [13]
showed that ? is in the range (0-2.63), and the lack of
agreement between theory and experiment is due to the
uncertainty about the fluid properties needed to define P
and the experimental uncertainties associated with the
onset and ending of hexagonal convection. In order to
make a prediction for the rigid case, we take 7 to be 2.06
and with the value of A* taken from [10] we find that the
critical value for the steady flow Reynolds number above
which convection cannot take place is 2.1. The latter re-
sult is consistent with [6], where it was stated that hexag-
onal convection was not observed at Reynolds numbers
greater than 10 for air.

In Fig. 5 the loci of the points F and F; in the (g,A3)
plane are denoted by the curves C, and C,, respectively.
Curves C, and C; represent the loci of the points of
secondary bifurcation from the lower branch of the roll
mode. Point M, where C; and C, meet corresponds to
the position where F; merges with F,. Similarly, M, cor-
responds to the point where F, and F, merge. It is
perhaps useful at this stage to discuss the implications of
Fig. 5 for any experimental investigation of the effect of a
shear flow on convection patterns. In the first instance
we suppose that the shear is fixed at a value correspond-
ing to a point to the left of a vertical line through M, in
Fig. 5. In this case, no convection occurs until C, is
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FIG. 5. The loci of points F; and F; in the e-A, plane are
denoted by curves C, and C,, respectively. Curves C, and C;
represent the loci of the points of secondary bifurcation from
the lower branch of the roll mode. The solutions shown corre-
spond to the case 0=0.5,a=1.

crossed. At this stage, a discontinuous jump to a
modified hexagonal mode will occur if the experimental
noise is sufficiently large. The size of the noise needed to
trigger the convection decreases when A, increases. Be-
tween the horizontal axis and C;, a small amplitude
stable roll is possible although for small values of the
shear it would probably not be excited, since at that stage
a larger amplitude modified hexagonal cell would already
be established.

When C, is crossed, a stable roll is again possible,
while beyond C, the modified hexagonal cell is unstable,
so that a roll cell aligned with the shear is the only stable
state. The switch from the modified hexagonal cell to the
roll cell leads to a discontinuous jump in the amplitude of
convection, and hysteresis occurs when € is subsequently
decreased. Thus, at this stage the introduction of shear
flow has had only a slight effect on the zero-shear bifurca-
tion picture. More precisely, the range over which the
modified hexagonal cell exists has been decreased and the
possibility of small amplitude roll convection when the
Rayleigh number crosses the linear critical value now ex-
ists. The likelihood of the latter event taking place in-
creases as the shear increases, since C, approaches C; in
that case.

Now suppose that the shear is fixed at a value corre-
sponding to a point between vertical lines through M,
and M,. The modified hexagonal mode now bifurcates
supercritically from the weak roll cell. Furthermore, the
onset of convection leads in this case to the formation of
a weak roll which subsequently suffers a secondary bifur-
cation to the modified hexagonal cell. At higher values of
¢ the picture is unchanged, and hysteresis will occur.

The next regime occurs when the shear is between the
values corresponding to M, and M; in Fig. 5. Now the
modified hexagonal cell loses stability to a roll cell, and
hysteresis no longer occurs. Thus, when the Rayleigh
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number is increased through its linear critical value, con-
vection first appears as a supercritical bifurcation to a
roll cell. The roll cell then suffers a secondary bifurcation
to a modified hexagonal cell, which, itself, loses stability
back to the roll cell. Thus, in this regime the amplitude
of convection changes continuously when the Rayleigh
number increases or decreases. Finally, if the shear is
further increased, the roll cell is stable at all Rayleigh
numbers and the modified hexagonal cell is never present.

Thus we have seen that between C,; and C,, convection
with a planform other than streamwise rolls can occur.
In fact, the cell pattern in this interval is shown in Fig.
6(a)—6(d) for different values of A3 at a fixed value of
€=20. The contours correspond to the disturbance tem-
perature at z=1. We see that the shear flow deforms the
hexagonal shaped cells of the zero shear case. However,
even at a value of the shear flow just before F; and F,
merge [Fig. 6(d)], a roll pattern has not been established.
Thus, as in the zero shear case, there is a discontinuous
change in the cell pattern when the roll cell becomes the
only stable state. Note also that for even higher values of
X3 the only possible stable finite amplitude cell is the roll
cell. Figures 6(a)—6(d) can be usefully compared to Figs.
5(a) and 5(b) of [14], in which the evolution of rolls from
hexagons is shown from experiment for the nonzero shear
case.

As another special case that enables us to make analyt-
ical progress, we now suppose that the shear flow is in a
direction at right angles to the roll solution X,=Y,=0,
Z,70. Thus we now set A,=0 and we can again seek
solutions of (3.2) with X,=Y, and X,, Y,, Z, all real.
The appropriate form of (3.2) is then found to be given by

0= X%
—e—=

0={e—2A2}Z,—aY3i—Z,{R,Z%+2PY3} .

Yo—aYyZ,—Y,{4RY3+PZ}} , (3.7a)

(3.7b)

Thus we see that the Y mode now becomes linearly unsta-
ble before the Z mode. The roll modes IIa and b again
exist (but with a shift of origin) and, by eliminating Y,
we can derive a cubic equation for Z,. In fact, the equa-
tion is obtained directly from (3.5) by a shift of origin in
E. .

The finite amplitude solutions for the case o =0.5,
a=1, and a range of values of XI are shown in Fig. 7.
The solution branches IIIb and IVb now bifurcate from
IIa supercritically while ITIa and IVa initially bifurcate
subcritically from the zero state. For small values of }_»1,
these branches are stable for a finite range of values of €
between the turning point labeled F; and the point la-
beled F; on the curve shown for the smallest value of ;.
It is of interest to note that at point F,, the solutions IIla
and IVa become unstable to a perturbation in X, — Y, so
that there exists a finite amplitude solution with XY,
bifurcating from this point. We do not calculate that
solution here, since it is almost certainly physically ir-
relevant for the reasons to be discussed below. We note
that as A, increases point F; moves toward and finally
hits the € axis and IIIa and IVa arise from a supercritical
bifurcation and are therefore stable until F,. In fact, the
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FIG. 6. Contours of constant disturbance temperature for the case 0 =0.5,2a=0.1, e=35, X;=O, 1.6, 3.2,4.8.

band of stable solutions terminating at F, eventually
disappears when F, hits the € axis. The roll mode IIb is
seen to be stable beyond the value of € at which Va and
Vb bifurcate as unstable solutions of the amplitude equa-
tions.

If we restrict our attention to the situation with
Xy, =Y, then the results shown in Fig. 7 indicate that the
onset of convection will be in the form of almost hexago-
nal shaped cells until F, hits the ¢ axis. For values of %,
greater than the critical value at which this occurs, the
only possible stable finite amplitude state is that corre-
sponding to IIb after the secondary bifurcation of Va and
Vb. It follows that there is then a small band of values of
e beyond 2e=2X} where no stable state exists. However,
there is the possibility of a finite amplitude state with
X,# Y, but, since our analysis has not allowed for a roll
cell parallel to the x axis, our results are probably only
physically relevant until F; moves to the right of the Z,
axis in Fig. 7. We believe this to be the case, since, from
our discussion above for the case when the shear flow was
parallel to the z axis, we know that such a roll state bifur-
cates supercritically from € =0. However, these remarks
must remain speculative until we extend our analysis to

o

3]

-10

Ay increasing

FIG. 7. The equilillrzium solutions of (3.2) for the case
0=0.5,a=9, A,=0, (3A,/2)=0.05, 0.85, 1.65, 2.45, 3.25, 4.05.
Unstable solutions are represented by the dashed curves.
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FIG. 8. Contours of constant disturbance temperature for the case 0 =0.5,a=1, =10, (2/. 3)7»?:0, 1.6,3.2,4.8.

account for the interaction of more than three modes. If
we assume that the roll mode parallel to the x axis will
destabilize IIIa and IVa, then the critical value of Xl at
which F; crosses the Z|, axis gives the size of the shear
flow needed to cause the onset of convection to always be
in the form of streamwise rolls. A calculation shows that
this will happen when A} is approximately 922 with
og=0.5.

In Figs. 8(a)—-8(d) we show contours of constant distur-
bance temperature at z=1 at different values of Alata
fixed value of e=10. We see that the main effect of the
shear flow is to generate increasingly strong cells in be-
tween the original hexagonal shaped cells. However, we
note that if € is increased slightly above zero a stable roll
cell aligned with the basic shear flow is also possible; that
solution is not described by our three mode analysis.

IV. FURTHER COMMENTS AND CONCLUSIONS

We have given a description of the process by which a
shear flow destroys the preference of a fluid to support
hexagonal cells at the onset of convection in a non-
Boussinesq fluid. The amplitude equations we derived

describe the effect of both constant and slowly varying
unsteady nonplanar shear flows on the solutions of the
amplitude equations of [1,3]. We have restricted our at-
tention to a certain high frequency limit of the amplitude
equations; this enables us to reduce (2.16) to an
equivalent steady flow system (3.2). Note, however, that
the high frequency limit we took was subsequent to the
assumption that the convection and mean flow evolve on
a long time scale so that, strictly speaking, our results
correspond to a range of low frequencies. If the scaled
frequency  is not large, then it appears that a numerical
treatment of (2.16) is appropriate; we do not address that
problem here. The analysis of [9] concerned only steady
shear flows and was restricted to rolls aligned with the
flow. The stability analysis given in [9] is incomplete,
since it does not allow for perturbations with, in our no-
tation, X#Y. Figure 2 of [9] is a sketch of the possible
stable solutions found in Yoshizaki’s qualitative analysis.
There are some similarities with our Fig. 5 but the stabili-
ty properties shown are in error for the reason given
above.

The two cases we considered in detail correspond to
the situation where the shear flow is at right angles or
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parallel to the roll mode (of amplitude Z) in our three
(complex) mode analysis. When the flow is aligned with
the rolls, we find that, as indicated in Fig. 7, the shear
flow causes the hexagonal cells to deform and become
connected. This connection between the cells is caused
by the fact that as the shear flow increases, the mode
which, in the zero shear case, exhibits hexagonal cells has
the ratio of the Z mode amplitude to the X,Y modes in-
creasing. However, before the deformation of the hexag-
onal cells into rolls is complete, the mode loses stability
to the “pure” Z roll mode. Some experimental results of
the effect of a shear flow on convection cell patterns have
been given by Graham [14]. Kelly [5] gives a summary of
Graham’s results and related work by Avsec and Luntz
[15]. In Fig. 18 of [5], a sketch of the experimental re-
sults corresponding to Fig. 7 of this paper is given. The
initial evolution shown in Figs. 18(a)—18(c) of [5] is con-
sistent with our Figs. 6(a)-6(d). However, Figs. 18(d) and
18(e) of [5] suggest that the next step in the evolution pro-
cess is the re-emergence of a hexagonal cell pattern rotat-
ed through 30 degrees from the original one. Our calcu-
lations do not allow for such a possibility, but it is in-
teresting to note that at this stage we have the situation
appropriate to our second special case with the flow in
the x direction. The evolution shown in Figs. 8(a)-8(d) is
then seen to be consistent with that shown in Fig. 18(f) of
[5]. Thus it appears that there is some qualitative agree-
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ment between our theory and experimental observations.
A more detailed comparison requires us to extend our
analysis to allow for more possible interactions. In the
meantime, it would be interesting to see if experiments
could reproduce the theoretical trends associated with,
for example, Fig. 5. Kimura et al. [16] investigated ex-
perimentally the effect of shear on thermal convection by
use of an annular convection cell in which the flow as
generated by moving the upper surface azimuthally.
They observed an intermediate form of convection exist-
ing between cellular convection and longitudinal rolls
that might correspond to our hexagonal cell pattern.
However, Kimura et al. used a cell with an aspect ratio
of only five, and the finite thermal conductivity at the
upper surface initially caused rectangular cells to be ob-
served rather than hexagons. They found a critical value
of the shear, above which longitudinal rolls occur, that
increases with Rayleigh number, but we cannot compare
our results with their observations, since their data starts
only at twice the critical Rayleigh number, which is out-
side the range of validity of our theory.
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FIG. 6. Contours of constant disturbance temperature for the case 0 =0.5,a=0.1, €=5, Ii =0, 1.6, 3.2, 4.8.



FIG. 8. Contours of constant disturbance temperature for the case ¢ =0.5,a=1, =10, (2/3 )i_Lf=0, 1.6,3.2,4.8.



